Cone Volumes Teacher Sheet

Introduction

The aim of this activity is to have students work out the volume of a cone using a variety of different known measurements. This involves application of Pythagoras' Theorem, and right-angled triangle Trigonometry.

Then the students progress to finding the optimum apex angle to maximise the volume of a cone for a given slant height. **No knowledge of calculus** is required – the process is completed using numeric Graph Analysis tools.

This activity is designed for students aged 12 to 15, both as a consolidating activity of existing skills and preparing the conceptual way for future optimisation problems.

Although the screenshots in this document are taken from a colour screen Nspire CX, the activity works just as well on a greyscale Nspire handheld. However, OS 3.0.2 or later is required.

Problem 1 – Introductions and Assumptions

The first 11 pages introduce the vocabulary that will be used, and checks the students' existing knowledge and ability to apply Pythagoras (pages 1.6 and 1.7) and Trigonometry (pages 1.8 to 1.11). In order to answer the questions on these pages, students will most likely need to draw their own diagrams on their page, as well as use the Scratchpad for the evaluation of their calculations. *The Scratchpad Calculator can be accessed by pressing* (a), and afterwards press (s) to return to the document.

In the process of working out the numerical answers, students may report that they obtain a similar, but not exactly the same decimal answers as those offered as options. This situation can arise from using, say, 3.14 instead of the exact value of π , or by not using the full decimal value of a previous answer. If this occurs, students should be **shown by the teacher** how to use the Scratchpad to generate answers that not only use π , but that also do not suffer from rounding errors.

Students also need to be aware of whether their Scratchpad settings are in **Degrees or Radians**. It can be left to the teacher to decide whether to forewarn the students of this, or to let them have the learning experience of realising this themselves.

The question pages have been designated to be 'Self-Check', so students should press ↔ then ★ to verify if they are correct, after each one.

Students should note that page 1.4 has square option boxes, meaning that more than one option is correct, and that they should select **all** the correct formulae in order for it to be marked correct.

Cone Volumes

1.3	1.4 1.5 *ConeVolum0.1 🗢 🛛 🕅 🔀	
A righ	t cone has base diameter 8cm and height	
10cm	. Its volume is	
	107.0 and (140)	
	251.3 cm ^s (1dp)	
	502.7 cm ³ (1dp)	
	670.2 cm ² (1dp)	
L.		
1.6	1.7 1.8 ► *ConeVolum0.1 マ 👊 🖄	
A righ	it cone has radius 5cm and vertical height	
ociii.	what is the angle at its apex?	
	32.0° (1dp)	
	58.0° (1dp)	
	64.0° (1dp)	
	77.4° (1dp)	
	102.6° (1dp)	
	116.0° (1dp)	
1.9	1.10 1.11 ▶ *ConeVolum0.1 🗢 🛛 🕼 😹	

1.4	1.5 1.6 🕨 *ConeVolum0.1 🗢 🛛 🐔 🔀
A righ slant I	t cone has circular base radius 6.5cm and neight of 11cm. Its ∨olume is…
	392.6 cm ³ (1dp)
	486.7 cm ³ (1dp)
	565.3 cm ³ (1dp)
	3484.2 cm ³ (1dp)
1.7	1.8 1.9 ▶ *ConeVolum0.1 マ 🕼 🛛
A righ height	t cone has slant height 15cm and vertical 12cm. What is the angle at its apex?
	73.7° (1dp)
•	73.7° (1dp) 77.3° (1dp)
	73.7° (1dp) 77.3° (1dp) 102.7° (1dp)
	73.7° (1dp) 77.3° (1dp) 102.7° (1dp) 106.3° (1dp)

1.5	1.6	1.7		*ConeVolum0.1 🗢	1 ×		
A circular based right cone has height 25cm and slant height 30cm. Its volume is							
	434.1	cm³	(1 d	p)			
	1022.4 cm ³ (1dp)						
	7199.	5 cm ³	3 (1	dp)			
	8639.	4 cm ³	³ (1	dp)			
	39924.4 cm³ (1dp)						
1.8	1.9	1.10	•	*ConeVolum0.1 🗢	<[] 🛛		
◀ 1.8 The ap height	1.9 pex an is 11c	1.10 gle of :m. H	► ar ow	*ConeVolum_0.1 🗢 right cone is 48" and its tall is it?	slant 🛛		
1.8 The appropriate the second sec	1.9 pex an is 11c 4.5 ci	1.10 gle of :m. H m (1d	Ìan ow p)	*ConeVolum_0.1 ↓ right cone is 48* and its tall is it?	slant		
 1.8 The approximately height O 	1.9 pex an is 11c 4.5 cr 7.4 cr	1.10 gle of :m. H m (1d m (1d	ran ow p)	*ConeVolum_0.1 ↓ right cone is 48° and its tall is it?	slant		
1.8 The ay height	1.9 pex an is 11c 4.5 cr 7.4 cr 8.2 cr	1.10 gle of :m. H m (1d m (1d	a r ow p) p)	*ConeVolum_0.1 ↓ right cone is 48" and its tall is it?	slant		
1.8 The apheight	1.9 pex an is 11c 4.5 cr 7.4 cr 8.2 cr 10.0 c	1.10 gle of :m. H m (1d m (1d m (1d	p) p) p)	*ConeVolum_0.1 ↓ right cone is 48* and its tall is it?	slant		

The a	pex angle of a right cone is 85° and its slant					
height	neight is 17cm. Its volume is					
	150.7 cm ³ (1dp)					
	445.0 cm ³ (1dp)					
	1731.3 cm ³ (1dp)					
	2348.2 cm ³ (1dp)					

The incorrect, distractor answers on each page are all generated from making 'Classic Mistakes' such as adding instead of subtracting when using Pythagoras' Theorem, using the incorrect trigonometric ratio, not halving the apex angle when dealing with the angle inside the right-angled triangle, etc.

Problems 2, 3 and 4 – Focusing on the Apex Angle in Context

Pages 2.1 and 2.2 introduce problems 3 and 4. On pages 3.1 and 4.2, students should grab the white circles to align the segments with the sides of the cone, and thus read off the accurate apex angle.

Problem 5 – Optimising the Cone Volume

Page 5.2 is important for students to experiment with, to appreciate that the maximum volume comes when the apex angle is around 110°. When the apex angle is set to 0° or 180°, are the students surprised by what they see (or don't see!) ?

Page 5.3 could be used for class discussion about why the Cornetto and WaterCone[™] were not designed to maximise the volume of their cones.

Page 5.4 introduces the task of optimising the volume, whilst pages 5.5 to 5.8 take students step-by-step towards deriving the algebraic function for the volume in terms of slant height, s, and apex angle, x.

Page 5.8 requires students to correctly identify **all** of the valid algebraic versions (more than one is correct)

Analyse Graph tools to locate the optimum apex angle. Find it to 2 decimal places.

Cone Volumes

The completed graph is shown on the left, for when the slant height, s = 5 cm.

The maximum volume of 50.8333.. cm^3 comes when the apex angle is 109.4712.... degrees.

Problem 6 – Light Hearted Ending, with Extension Task.

Pages 6.1 to 6.4 are meant to be a light-hearted ending to the task.

Page 6.5 can be used as an extension task for able students who finish early to attempt to solve. Again, more than one correct answer exists on this page. Once the correct answers have been identified, students could then embark upon deriving these formulae from scratch – this might take another significant chunk of time.

5.11 5.12 6.1 *ConeVolum_0.1 マ The inventor of the orange traffic cone was	 5.12 6.1 6.2 ConeVolum_0.1 ConeVolum_0.1 ConeVolum_0.1 ConeVolum_0.1 	6.1 6.2 6.3 ► *ConeVolum_0.1 Killer K
 an American an Australian a Brit a Frenchman 	 at the start of World War 1 at the start of World War 2 at the end of World War 2 during the 1960's 	 in America, in 1904 in Italy, in 1907 in Spain, in 1913
6.2 6.3 6.4 *ConeVolum_0.1 ♥ How many years after they were first invented, were ice-cream cones finally mass produced? ● 5 years ● 10 years ● 20 years ● 30 years	$6.3 \ 6.4 \ 6.5 \ ext{ConeVolum_0.1} \ ext{ConeVo$	

Acknowledgements

Images used in this activity were sourced from the following internet pages on 18 June 2011.

Page 3.1

http://www.fdin.org.uk/wordpress/wp-content/uploads/Cornetto_Enigma_VanChoc_Wrap.jpg

Page 4.2

http://greentechfreedom.com/wp-content/uploads/2010/11/funktion1600.jpg